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Abstract

A rigorous theory of backscattering from slightly rough statistically nonstationary sur-
faces is developed. The development procedes through the application of two ensemble
averages: the first to all realizations of the surface having fixed ﬁonstationary features, and
the second over all nonstationary surface characteristics. The resulting theory is applied to
acoustic seafloor reverberation, where it is found that nonstationarity must be assumed to
obtain agreement with observed reverberation fluctuations. The analysis is further extended
to the time domain where it is demonstrated that for Bragg scatter, no reduction in the
predicted fluctuations occurs for frequency diverse waveforms, thus providing a method of

differentiating Bragg scatter from other nonresonant scattering processes.
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1. Introduction

The scintillations of signals propagated through turbulence or scattered from rough sur-
faces, such as the twinkling of stars or the play of sunlight on water, have long fascinated
man. As a consequence, extensive research has been devoted to first understanding and
explaining such phenomena and subsequently to exploiting them to probe the environment.
Despite these efforts, the nature of the reverberant field backscattered from rough surfaces
at low grazing angles is still poorly understood.

An analogy is often drawn between rough surface scatter and scattering from a random
distribution of discrete points [Goodman 1976]. In this case, the scattered field is regarded as
the complex sum of the contributions from the many elementary areas of the surface that are
simultaneously irradiated. If the contributions from each scattering element are independent
and their phase is uniformly distributed over its full range, then, as the number of such
areas becomes large the distribution of the amplitude of the scattered field approaches the
Rayleigh distribution. In this article, the scintillation index, which is unity for the Rayleigh
distribution, is used as a measure of the strength of the fluctuations.

Measured statistics of microwave sea surface clutter and of acoustic seabed reverberation
are generally found to exhibit significantly higher fluctuations than those predicted by the
Rayleigh distribution. A number of approaches have been taken to model or explain these
phenomena. Jakeman and Pusey [1976] and Oliver [1983] propose models that basically
stem from a consideration of point scattering theory. To explain the fluctuations of seafloor
reverberation, Crowther [1980] modeled the seabed scattering strength as a two-valued ran-
dom variable, and McDaniel [1990] treated seabed reverberation as a spectral estimation
process. None of these approaches follow from a rigorous consideration of rough surface
scattering theory. An exception is the study of Valenzuela and Laing [1970] who applied
composite-roughness theory [Kur’ynov 1963] to radar scattering from the sea surface. They
found, however, that such effects were insufficient to explain the observed fluctuations.

This study addresses the fluctuations of seafloor reverberation at acoustic frequencies in




the kHz regime. The basic assumptions invoked are first that penetration into the seabed
with subsequent rescattering may be neglected, and second that the seafloor is slightly rough
so that scattering may be treated using the small waveheight approximation. The first of
these assumptions restricts the applicability of the theory to the sandy seabeds [Jackson
and Briggs 1992] that are characteristic of the shallow water areas of continental shelves.
The second requires that the Rayleigh parameter be small. For a plane wave incident on a
slightly rough surface that contains roughnesses of all length scales, the small waveheight
approximation predicts that the backscattered field depends only on that surface component
having a wave number Kp = k,/2 where k; is the horizontal component of the incident wave
vector. However, for the directional sources used in reverberation measurements, backscatter
is governed by a range of surface wave numbers about the Bragg wave number K. The range
of rough surface wave numbers contributing to the scatter is found to play an important role
in determining fluctuation statistics.

With these two assumptions, a rigorous theory is developed to predict the scintillation
index and scattered intensity covariance of backscatter. A general treatment is developed for
statistically nonstationary surfaces: surfaces for which the correlation of the rough surface
excursion at two separated points g1 and g, depends on both p; and gz as opposed to the
stationary case where the correlation depends only on the separation (p; — p3). The key to
this development is the application of two ensemble averages: the first to that set of surfaces
having a fixed or deterministic nonstationary character, and the second over all possible real-
izations of nonstationary characteristics. The general theoretical formulation of the problem
and definition of the statistical averaging procedures for stationary and nonstationary surface
repesentations are presented in section 2.

Section 3.1 addresses frequency domain scattering from statistically stationary surfaces.
Assuming a simple form for the source directivity, the scintillation index is found to be
identical to the Rayleigh value of unity provided that the dimensions of the ensonified area

are large on a wavelength scale and the rough surface wave-number spectrum (the spatial




Fourier decomposition of the surface correlation function) is slowly varying in the vicinity of
the Bragg wave number. These two provisions insure that only a small range of rough surface
wave numbers contribute to the scatter énd are furthermore consistent with the geometries
employed in seafloor reverberation measurements and also with the applicable measurements
of seabed roughness wave-number spectra [Briggs 1989]. Section 3.2 extends the frequency
domain treatment to statistically nonstationary surfaces. Two very simple representations
of the nonstationary process are assumed, both of which yield similar results and predict
the one clear trend, a significant increase in fluctuations with decreasing ensonified surface
area, that is indicated by the available statistical data [Crowther 1980, Chotiros et al 1985,
Boehme and Chotiros 1988, and Gensane 1989].

In section 4, the theory is extended to the time domain, where it is found fhat to obtain
results independent of the specific form of the surface correlation function, the surface wave-
number spectrum must again be slowly varying in the vicinity of the Bragg wave number. To
obtain a formulation amenable to numerical analysis, an additional approximation is made
that limits the validity of the results to waveforms of moderate bandwidth. Results for the
scintillation index and time-lagged intensity covariance are obtained for pure tone pulses,
and it is demonstrated that the intensity covariance may be inverted to estimate the spatial
structure of nonstationary surface features.

Section 4.3 addresses frequency diversity effects, whereby significant reductions of the
scintillation index have been experimentally obtained [Ulaby, et al 1988, George and Jain
1972] by increasing the time-bandwidth product of the waveform used above its nominal value
of unity for a pure tone pulse. For the backscatter process considered here, a frequency di-
versity effect is not predicted for either stationary or nonstationary surface statistics, given
the conditions under which the theory is valid. This is an important finding because it rep-
resents a means of experimentally differentiating between Bragg scatter and other scattering
mechanisms, such as volume scatter, that exhibit a frequency diversity effect.

In section 5, predicted scintillation indices are compared with the data of Gensane [1989)




using a simple two parameter model for the nonstationary surface features. Agreement is
obtained with the data by assuming that the normalized variance of the surface roughness
wave-number spectrum is approximately unity, and that the characteristic length scale of
nonstationary surface features is on the order of 1 m.

In section 6, the major findings of this study are summarized: that nonstationary surface
statistics must be assumed to account for experimental observations, and that frequency
diversity effects do not occur for Bragg backscatter. Other nonstationary features of the
seafloor that may affect fluctuation statistics are also discussed.

2. Theoretical development
2.1. General formulation

The scattering geometry considered is depicted in figure 1, in which the acoustic field

incident from a directional source is backscattered from a rough surface. The backscattered

acoustic pressure p(t) obeys

pt)= [ h(r)e(t —7)dr ¢

—00
where h(7) is the impulse response of the scattering channel, and e(t) is the transmitted
waveform. The impulse response is related to the frequency response H(w) by a Fourier

transform

Hw) = /oo drh(T) exp(—iwT) (2)

For a backscattering géometry, the Fraunhofer phase is large, so that Fresnel phase correc-

tions [Melton and Horton 1970] may be neglected, and the applicable expression for a slightly

rough surface is

H(w) = F [ d5i¢yexpliv(r, - az,)] O (3)
where
F = w?x(0) sin? 0/ (r R2c?) (4)
a=2cosb)c




and x(6) is a modified reflection coefficient [Jackson, et al, 1986], 2, = ©(p) is the surface
ensonification function, 7, = 2R/c is the two way travel time from the source to the origin
of the coordinate system, with ¢ the sound speed in the host medium, and w the radian
frequency. The grazing angle 8, slant range R, and excursion of the rough surface from its
mean value (; = ((p}) that appear in these expressions are depicted in figure 1. In obtaining
this expression for H(w) it has been assumed that R, § and x may be considered constant
over the ensonified area.

In the expression for H(w) given above, only its dependence on the stochastic parameter
(1 has been made explicit. The body of this article addresses the dependénce of intensity
moments on this parameter. However, the modified reflection coefficient x(#) may also
vary with position through its dependence on the local values of sediment properties. The
derivation for this case closely follows that for stochastic variations of ¢ and will be discussed

later. From the viewpoint of composite-roughness theory, H(w) also depends on the local

| large-scale surface slope, through which the grazing angle 6 may be considered a stochastic

variable. Valenzuela and Laing [1970] investigated this effect for the scattering of radar waves
from the sea surface and concluded that it was insufficient to explain the experimentally
observed fluctuations. Because the slopes of horizontally large-scale seafloor elevations are
considerably lower than those of the sea surface, this effect is not considered.
2.2. Statistical averages

Our interest is in determining the expected value of moments of the received pressure
field, namely < p(t)p*(t) > and < p(t)p*(t)p(t')p*(¢') >. From expressions (1) and (3), it is
apparent that these expected values depend on the second and fourth moments of the rough

surface excursion < (1{; > and < (1(3(3(4 >. For a statistically stationary surface
< GG >=C(f— ) = / dEW (K)expliK - (51 — 2] (5)
In this case the correlation function C depends only on the separation ;3 — p2, with the surface

roughness wave-number spectrum W(I?) being defined as the spatial Fourier transform of

C.




If the rough surface is statistically nonstationary < (1{; > takes the form [Papoulis, 1965]

< (16 >= C(p1, p2)

With the change of variables p_ = gy — g5 and gy = (p1+p2)/2, a position dependent surface

roughness wave-number spectrum W(Iz, p+) can be defined
<6 >=C(F, 5 = [ARW(R, ) expik - - (6)

in analogy to the definition of the wave-number spectrum for a stationary rough surface.
The wave-number spectrum W(I? ) averaged over all nonstationary realizations of the rough
surface, where the overbar is used to designate this average, is defined as

—_ = d —
W(E)= lim _u/ P w(R,7)

T v 4Tiys

Let us now return to the problem at hand, the estimation of such quantities as
< H(w)H*(w) >= |F|? / d5_df, dRW (R, 7,)0 0 exp{ilR - 5. — walz, — 22)]}

The ensonification factors }; and , in this expression determine the extent of the integra-
tion over g. This integration then yields a local average of the position dependent wave-
number spectrum over the ensonified area. Thus, to obtain the expectation of H(w)H*(w)
for all nonstationary representations of the rough surface, an additional ensemble average

corresponding to that performed to obtain W(I_f) is necessary

< H@H (@) >= |F|? / d5_dg, dRW ()0 Oy explilK - - — wal(z, — 22)]}

The procedure described above for determining the expected moments of the rough sur-
face excursion entails two ensemble averages. The first is over all realizations of the surface
having the same nonstationary characteristics. An example of such a set of surfaces is an
ensemble in which the rms roughness varies deterministically with position. The second
ensemble average is over all nonstationary realizations of the suface. For the example con-

sidered, this second average is over all possible variations of the rms roughness with position.

6




Obtaining second moments of the scattered intensity entails evaluating the fourth moment

of the rough surface excursion < (1{2(3(s >. If ( is a Gaussian random variable

< (1623Cs >=< (102 >< (30 > + < (13 >< (2(a > + < (1a >< (362 > (1)

It follows from the result obtained above for < (;(; > that the ensemble average over all

nonstationary surfaces of a representative term on the right hand side of (7) takes the form

where 7, = (7 + /1) /2.

If W(K) for a nonstationary surface is chosen equal to W (K) for a stationary surface,
fhen the mean intensity scattered in the two cases will be identical. However, the above
expression for the fourth moment of {( depends on the correlation function of W(l? ,P) at
disjoint positions, so that the second moment of the intensity will, in general, differ in the
two cases.

3. Frequency domain scattering

It is clear that obtaining numerical results from the theoretical formulation of section
2 presents some difficulty. It is hence useful to first examine scattering in the frequency
domain to establish the validity of the various approximations that are needed to obtain
results amenable to numerical analysis.

3.1. Statistically stationary surfaces
To obtain results for the statistically stationary case, it will be assumed that the projector

ensonification function 2 is Gaussian
Oy = exp|—23/(Az)? — yi/(Ay)?] (8)

where

Az = gRtan(¢,;/2)/siné

Ay = gRtan(¢,/2)




with ¢, and ¢, the projector half-power beam widths along the z and y axes, respectively,
and g = [2/1n(2)]/2. The ensonified area in this case is given by TAzAy/2.

For this form of the ensonification function, < I(w) >=< H(w)H*(w) > is given by
< I(w) >=|FP? / d5,dp_dEW(E)expli(E - f- — waz_)]

222 +22/2 2l + y3/2]
(Az)? (Ay)?

where j_ = (z_,y_) and p4 = (z4,y+). The integrals over j_ and gy in this expression

X exp[—

may be immediately performed to obtain
< I(w) >= |FPri(Aaty)? [ ARW(R) expl—(K, = ow)(Aa)*/2 — K}(Ay)?/2]

The remaining integral over K is an average of W(I—{‘) about the Bragg wave number Kg =

(ow,0). With the definition

~

Wg = AmAy/ il%u;/r—q—)exp[—(l(z — aw)}(Az)?/2 — K2(Ay)?/2]
the mean scattered intensity takes the form
< I(w) >=27°|F[(AzAy) W (9)

It should be noted that for wave-number spectra that are strongly varying functions of I?, W
may differ significantly from W(I?B). With the same approximations, the second moment
of the intensity is given by

< IP(w) >=2 < [(w) >* (10)

+{|F*r*(AzAy)? / dKW (K)exp[—(K? + o*w?)(Az)?/2 - KX(Ay)?/2])?

The expressions developed above for the first and second moments of the backscattered
intensity will be evaluated for two assumed forms of the wave-number spectrum W(I% ). The
first is the Gaussian form that is often assumed in scattering problems because of its ease of

numerical implementation
W(K) = Sexp[—(K2+ K?)L?]

8




where L is a characteristic length, and S a scale factor. For this wave-number spectrum,
Wp = S{[L +2(L/A2)"|[1 + 2(L/Ay)’]} 72 exp{—(awL)*/[1 + 2(L/Az)?]}

It is evident from this expression, that for L > Az, Wz will greatly exceed W(Iz B) =
Sexp[—(awL)?]. In such cases, a broad range of wave numbers contributes to W, and the
scattering process differs from classical view of Bragg diffraction as wave-number selective.

For the Gaussian spectrum, the scintillation index o2 = [< I*(w) > / < I(w >% - 1

takes the form

0% =1+ exp{—(awAz)?/[1 + 2(L/Az)?}

It is clear from this result that for a Gaussian spectrum, o2 depends strongly on frequency,
a dependence fhat has not been observed experimentally. This result is also independent of
Ay the cross-range extent of the ensonified area.

The second surface wave-number spectrum that will be considered is more typical of

those associated with the seafloor [Briggs 1989, Fox and Hayes 1985, Goff and Jordan 1988]
W(K) = S/[1+ LA(K? + K?)] (11)

The numerical evaluation of Wg and o2 for this wave-number spectrum may be simplified

by the use of the formula [Gradshteyn and Ryzhik 1980]

[ n - a(aexel(a)/28)

where ® is the probability function, to perform the integrations over K,.

The scintillation index predicted for the power-law spectrum is compared with that for
the Gaussian wave-number spectrum in figure 2. In this example, the grazing angle 6 is 30°,
the frequency 10 kHz, and the characteristic length L is 20 m. For the narrow beam patterns
assumed ¢, = ¢, = 1°, the dimensions of the ensonified area do not exceed L even for the
longest range considered. The results presented in figure 2 parallel those obtained by Yang,

Fennemore and McDaniel {1992] for forward scattering. They found that strong fluctuations

9




occured only when the source or receiver was in the near field of the surface, and that these

fluctuations were stronger for a Gaussian wave-number spectrum than for a quasipower-law

- spectrum. They also found that the introduction of an ensonification function led to higher

fluctuations.

For the extreme example considered in figure 2, Wp predicted by the Gaussian wave-
number spectrum exceeds W (Kp) by many orders of magnitude. The ratio Wg/ W (Kp) is
shown for the power-law spectrum in figure 3. Only at the very shortest ranges does this
ratio differ significantly from unity. It is apparent from the results of this subsection that if
we restrict our interest to wave-number spectra that are slowly varying in the neighborhood
of the Bragg wave number, and to ensonification functions such that Az and Ay are large
on a wavelength scale, the scintillation index will be unity for scattering from stationary
surfaces.

3.2. Nonstationary surfaces

For the nonstationary case, the derivation closely follows that for the stationary case.

With the introduction of a Gaussian beam pattern, the mean intensity for a nonstationary

representation of the rough surface may readily be reduced to the form

< I(w) >= 47| FP* [ d7\ Wa(74) expl-22% /(Ac)? - 243 /(Ay)]

where

dEW K, 1)

Wa(7y) = Azdy [ expl— (K. — aw)}(Az)?/2 — K2(Ay)?/2]

An ensemble average over all nonstationary surfaces then yields
< I(w) > =27%|FP*(AzAy)Wp

where it has been assumed that Wg(py) = Wp.
It is clear from the results of setion 3.1 that for cases of practical interest < I*(w) > may
be approximated by 2 < I(w) >2. Performing an average over all nonstationary representa-

tions of the surface then yields

< P(w)>=2< [(w) >< I(w) >

10




<T@ > =20 FI* [ 47,5 Wal5) Walah)
x exp[~2(z} +2{)/(A2)” = 2(yi +4))/(By)’]
Because Wg(p;) and Wg(f,) entail an average over a narrow band of wave numbers about

the Bragg wave number for wave-number spectra of interest, their correlation function will

be assumed to depend on position alone.
To evaluate the expression for < I?(w) > the two position wave-number correlation func-

tion is assumed to be of the general form

Wa(5+)Wa(py) = WL +vC0w 5y — 7)) (12)

where v is the normalized variance of the wave-number spectrum and Cy is a normal-
ized correlation function. Using this form for the correlation function in the expression for
< T?(w) >, thence making the change of variables ¥ = gy — jJ, U= (5 + p1)/2, the
scintillation index may be reduced to

2 u2

' 2y du U
2 _ -+ _ z__ Y
=14 / ﬂAxAyCW(u) exp| (Az)? (Ay)z]

Crowther [1980] modeled scattering from a seafloor consisting of random patches taking

on only two values of the scattering strength: a low scattering strength with probability
s and a high scattering strength with probability 1 — s. Assuming a ratio of high to low
scattering strengths v, he found v = s(1 — s)(v — 1)?/[1 + s(v — 1)]* and that Cw was
exponentially distributed

Cyw (4) = exp(=[dl|/Lw)

where Ly characterizes the patch size. Inserting this correlation function in the expression

for 02 and making the change of variables u, = r cos®, u, = rsin, yields

00 rdr [
ot [ [ e

where f(¢) = sin®¢/(Az)? + cos® ¢p/(Ay)?. The integration over r in this expression may

be readily performed. The remaining integral over 1 can then be evaluated numerically.

11




To examine the sensitivity of the scintillation index to the assumed form of the correlation

function the Gaussian case will also be considered
Cw () = exp[—(uz + uy)/ Liy] (13)
For this correlation function,
o = 1+ 29/{[1 + (Ba/Lw)l1 + (Ay/Lw I}

It is apparent from this result that 1 < ¢ < 142y, with the maximum value being obtained
when Ly is much larger than the dimensions of the ensonified area.

The results obtained above for the scintillation index display no explicit dependence
on frequency. However, such a dependence is implicit because Wg(p,) and its correlation
depend on the Bragg wave number Kg = (aw,0).

The scintillation indices predicted for the exponential and Gaussian correlation functions
are compared in figure 4 which shows their dependence on slant range for a fixed grazing angle
30° and beam pattern ¢, = ¢, = 10°. In this example, v = .25 and Ly = 20 m. The results
for the exponential and Gaussian correlation functions are in close agreement and approach
unity as the slant range increases, and the dimensions of the ensonified area approach the -
characteristic length Ly . This decrease in the scintillation index is more evident in figure 5
which shows corresponding results for Ly = 5 m. In this figure, the results obtained for fhe
two correlation functions are again in close agreement.

Figure 6 shows the dependence of o? on ¢, for a fixed grazing angle of 30° for two values
of the characteristic length: the remaining parameters are those used in figure 5. Again,
the predicted scintillation index decreases as the size of the ensonified area increases. In
this example, clear differences in the predictions of the Gaussian and exponential models are
evident for very small beamwidths.

4. Scattering in the time domain
In most backscattering experiments the resolution in range is determined by the length

of the transmitted pulse and the effect of the beam pattern on range resolution is negligible.

12




Hence, in obtaining results in the time domain Q(z,y) will be replaced by ©(y) in the
analysis.

An additional approximation will be made to simplify the analysis: that the scatter-
ing is frequency independent. With this assumption the function F' is approximated by
w2x(0) sin® 6/ (m R?c?) where wy is the center frequency of the transmitted pulse. While this
approximation is consistent with those made to approximate other factors in F' that do not
appear in the argument of an exponential by their mean values, it is evident that it limits
the validity of the results to waveforms of moderate bandwidth.

Following the general formulation developed in section 2, one finds
h(r) = F [ dudynd(r = 7, - za) expl-47/ (A9)]6a
and consquently that

p(t) = F [ derdyséa expl=3/(By)lelt = (7. + z10)]
For statistically nonstationary surfaces, it follows that
<p(tp () >=|FP? [ d5_dp:dRW(R, fy) exp(= (v} +v3)/(Av)’]
x exp(ilK - p_)e[t — (7o + zra)]e*[t’ — (7, + z20))] (14)

Irrespective of the frequency independent approximation used to obtain (14) the time-lagged

intensity covariance is given by
< I(HI(H) >=< p(t)p"(t) >< p(t')p"(¥') > + < p(t)p"(¢') >< p(t)p"(t) > (15)

where the only assumption made to obtain this result is that an additional term < p(¢)p(t') >
< p*(t)p*(¥') > appearing in this expression may be neglected, as demonstrated in section 3.

Before considering specific waveforms, it is worthwhile obtaining general results for sta-
tistically stationary surfaces to determine if any approximations that simplify the analysis

may be obtained. First consider
< R(T)R*(7") >= |F|? / dprdp26(r — 15 — 210)8(7" — 75 — 2200)

13




x exp[—(yi +12)/(Ay)*IC(p1 = 72) (16)
Replacing C(p1 — p) by its Fourier decomposition in wave-number space, the result obtained
is

< h(1)h*(r') >= (|F|/a)? / dy,dy_dEW(E)
x exp[—(2y} +y2/2)/(Ay)* +iKe(r — 1) /e +iKyy ]
Performing the integrals over y4 and y_ in this expression, then yields
< h(r)h*(+') >= (Ay|F|/a)? / ARW (R expliK, (7 — ')/ o — K2(Ay)?/2]

This integral may be readily evaluated numerically. Normalized results are shown in figure
7 for the power-law spectrum (11) for two values of the characteristic length L. It is evident

from this figure, that the temporal covariance of the impulse response is a slowly varying

function of lag time for the time scales of interest. It is also apparent that this function is

dependent on the characteristic length L, as is strongly suggested by the representation (16).
Because consideration of the time-lagged covariance of the impulse response fails to yield

any obvious simplifications, we next address

-

< p(ms + At/2)p*(rs — At/2) >= |F|? / d7_d5 dEW(E)exp(iK - )

x exp[~(2y} +y2/2)/(Ay)*le(At/2 — zr@)e” (- AtL/2 — z40)

where t and t' have been replaced by 7, + At/2 and 7, — At/2, respectively, and stationary
surface statistics have been assumed. Performing the integrals over y, and y_, and substi-
tuting e(At/2 — z1a) = é(At/2 — z10) expliwg(At/2 — zy )], where € is the complex signal
envelope, along with the corresponding relation for e(—At/2 — z;a), into this expression
yields

< p(ry + At/2)p* (7o — AL2) >= 7| F*(Ay)? / UK, dzydzsW (U + awo, K,)

x exp[—K2(Ay)? /2 + iU (z1 — z3) + iwgAt]é(At/2 — 210)€"(=At/2 — z20)  (17)
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where U = K, — aw,. If it is now assumed that W(U + awy, K,) varies so slowly with U

that this dependence may be neglected, the integral over U yields 2m6(x, — x3), and
< p(7s + At)2)p* (7, = At/2) >= 27| F|*(Ay)® exp(iwoAt)
x / de s 6(A)2 — z,0)8" (~AL)2 — z,0) / dK,W(owo, K,)exp[-K2(Ay)?/2]  (18)
The analagous approximation for nonstationary surfaces takes the form
< p(1s + At)2)p* (1, — At/2) >= (27)?|F|? exp(iwoAt)

x [ doé(At/2 — 240)é (~At/2 — 240) [ dy Wa(F) expl-203/(00)']  (19)
where Wp(7,) is defined as
W) = Ay/(2m)"? [ dit,W(aws, K,), 7+l exp —K}(Ay)*/2

It is clear that (18) could also be obtained by assuming that < h(7)h*(7') > of (16) contains
a factor §(7 — 7') which is the case for point scatterers [Ol'shevskii 1967]. However, we have
seen that < A(T)h*(7') > is in general a slowly varying function of 7 — 7' and hence such
an assumption is useful for rough surface scatter only if the surface roughness Wave—number
spectrum is a slowly varying function of K, near K, = awp.

4.1. Pure tone pulses

The expressions above will first be evaluated for a Gaussian weighted pure tone pulse
e(t — 7) = expliwg(t — 7) — (t — 7)%/T?] : (20)

for which the half-power, or effective, pulse length T, is given by (2Iln 2)Y2T. First, we
consider the scintillation index, which entails evaluation of < p(7,)p*(7s) >. Proceeding

directly to the case of statistically nonstationary surfaces one readily finds
<pr)p'(n) >=4n|F? [ 47, Wa(5) expl-29}/(My)? = 2%/ T
where
Wa(7s) = (AyT/2ma) [ ARW(R, 7y) expl-K2(Ay)?*/2 = (K. - aw)’T/(20)]
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On comparing this result with the comparable result for < I(w) > obtained in section 3.2 for
scattering of continuous wave signals from nonstationary surfaces, it is apparent that with
the substitution T'/a = Az, the two expressions are identical. It thus follows that the results
presented in figures 4 - 6 for the scintillation index are applicable also to the backscatter of
Gaussian weighted pure tone pulses. |

To compute the time-lagged intensity covariance, expressions are needed for < p(t)p*(t) >

and < p(t")p*(t') > or for < I(r, * At/2) >. For the pure tone pulse (20)
< I(r,t Atf2) >= (2x|FI)? [ 4, Ws(7y) (21)
x expl—2y2 /(Ay)? — 22 a?/T? * 2Ate, afT? — (At)/(212)]
Taking an ensemble average over all nonstationary surface representations

< I(ry ¥ AL)2) >= 20°|F* Ay(T /) W5

yields a result that is independent of time, where Wg = WB( Pv)-

Because the results presented in section 3 display only a weak dependence on the form of

the correlation function assumed for Wg(43 )Wg(p:) in (12), a Gaussian correlation function
(13) will be assumed. For the Gaussian case, the first term contributing to the time-lagged

intensity covariance (15) takes the form

< I(r, + At)2) >< I(1, — At]2) >= (2n°|F|*WpAyT/a)?
x{1 + 7' exp[—(At/aLw)?/(1 + T*/a’Liy)]} (22)
where v is defined as
v =L+ (Dy/Lw)*T* (1 + (T/aLw)* "/

For a stationary surface, this contribution to the intensity covariance is independent of lag
time. In the case of nonstationary surfaces, a time dependence is predicted that depends
strongly on the characteristic patch size Ly . A result of this general form was first obtained

by Crowther [1980].
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Using approximation (19), the second contribution to the time-lagged intensity covariance

is

< p(rs + At/2)p*(7, — At/2) > |2 = (27| F*WpAyT/a)*(1 ++') exp[—(At)?/T?]  (23)

The dependence of this contribution to the intensity covariance on lag time is the same
for both stationary and nonstationary surface statistics, the only difference in the two cases
being the scale factor 1++’. On comparing (22) and (23), it is evident that the nonstationary
contribution of (22) decays more slowly with lag time than that of (23) and hence provides
a means of estimating L.

Assuming that the wave-number spectrum in (22) is a slowly varying function of K, WB
in this expression may be replaced by Ws. We then consider the normalized time-lagged

intensity covariance C(At) where

C(At) =< I(r, + At)2)I(1, — At/2) > [[< I(75) >]?

In figure 8, the normalized intensity covariance is shown as a function of lag time for station-
ary and nonstationary surfaces. This figure presents predictions for a slant range of 50 m,
grazing angle of 30°, and horizontal beamwidth of 10°. Results are shown for a pulse length
of 1 msec, for three characteristic patch sizes. For the value of v = .5 and the scattering
geometry assumed in this figure, only for Ly = 5 m, will the slowly varying time dependent
factor in (22) be clearly apparent, given that the validity of these results requires At < ;.

Figure 9 shows the normalized intensity covariance predicted for a scattering geometry
of larger scale in which a slant range of 500 m and pulse length of 10 msec are assumed. A
horizontal beamwidth and grazing angle of 10° were used to obtain results for a stationary
surface ’y = 0 and a nonstationary surface with v = 1. For this pulse length, nonstationary
features having a charateristic length Ly < 5 m are not experimentally resolvable. However,
the decay of the covariance due to large scale nonstationary features permits an estimation

of Ly in such cases.
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4.2. Spectral representation of nonstationary processes

While the examples presented in figures 9 and 10 provide some insight into the depen-
dence of the intensity covariance on experimental and seafloor parameters, they entail the
assumption that Cy depends on a single length scale Ly. A more general form for this

correlation function is

Cw(p) = [dRS(R)expik -7

For a pure tone pulse, the contribution to the intensity covariance of (22) then takes the

form

< 1(1, + At]2) >< I(rs — ALJ2) >= (2n°|F|*WeAyT/a)?
x{1 + (y/47?) / AR S(K)exp[~K*(Ay)*/4 — K2T?[4a® +iK, At/a]} (24)

With the change of variables At = 2A/c¢, (24) may be Fourier transformed with respect to
A via F(k;) = [ dAexp(—ik,A)f(A). Assuming a record of sufficient length, there results

Fke) = ('yac/47r)(27r3[Flzlji\/EAyT/a)2 /deS(acfzr/Q,Ky)

x exp[—c*T?k2 /4 — K}(Ay)?/4] (25)

This procedure thus provides a damped and averaged estimate of the spatial decomposition of
Cw. For (25) to provide a reliable estimate of S(K;,0), it is required that Ay > Amas where
Amag is the maximum length scale of interest so that averaging effects will be unimportant.
In addition, for the rolloff with increasing . in (25) to be negligible, we require T' < Amin/mc
where A,;, is the minimum length scale of interest.

Chotiros, et al [1985] Fourier transformed detrended intensity records and obtained re-
sults that differ from predictions [McDaniel 1990] for 1 m < A < 10 m. Their data were
acquired using a pulse length of 1 msec and Ay & 3.5 m, so that neither of the criteria above

are fulfilled, and the data cannot be inverted to estimate S(Kj,0).
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4.3. Frequency diversity

In both microwave and optical scattering from rough surfaces a frequency diversity or
frequency averaging effect has been experimentally observed [Ulaby et al 1988, George and
Jain 1972]. For backscatter this effect can be characterized by the parameter N =~ 2DAf/c
[Ulaby et al] where D is the slant-range resolution of the detection system, and Af is the
bandwidth of the transmitted waveform. Experiments employing broadband signals have
been used to verify that ¢ &~ 1/N for scattering from sufaces that are homogeneoﬁs on the
scale of the sensor’s footprint, so that as the signal bandwidth is increased from its nominal
value for a pure tone pulse Af = 1/T, the scintillation index decreases. It is of interest to
determine if such an effect is predicted in the case of Bragg backscatter.

First let us consider scattering from statistically stationary surfaces. If (15) is valid then
<I*t)>=2< I(t) >?

so that 02 = 1 regardless of the transmitted waveform and no frequency diversity effect
is predicted. The validity of (15) requires that the dimensions of the scattering area be
large on the scale of the wavelength of the ensonifying signal and that the surface roughness
wave-number spectrum vary slowly in the vicinity of the Bragg wave number so that the
scattering process is highly wave-number selective. Recall also that (15) is valid irrespective
of the frequency independent assumption.

For scattering from nonstationary rough surfaces, we invoke approximation (19) and

assume a waveform

e(t) = exp[i(wot + bt%) — t2/T?

It may be readily verified that in this case the result obtained is independent of the choice of
the parameter b so that the results reduce to those obtained for the pure tone pulse of (20) and
again a frequency diversity effect is not predicted. In this case, rtwo additional assumptions
have been made: that the scatter is frequency independent, and that the approximation of

(17) by (18) is valid.
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It is appropriate at this point to examine in detail the validity of approximation (18). For
" a pure tone pulse, (17) and (18) may be integrated assuming wave-number spectra of Gaus-
sian and power-law form. In the Gaussian case (17) yields a dependence on At of the form
exp[—(At)?/2(T?* + 2a2L?)] while approximation (18) yields a dependence exp[—(At)?/2T?].
It is clear that only if T > oL is (18) valid for this assumed form of the wave-number
spectrum. Results are shown for the power-law spectrum of (11) in figure 10, for a slant
range of 50 m, grazing angle of 30°, horizontal beamwidth of 10° and frequency of 10 kHz.
The three curves shown are the normalized level predicted by (18), the relative magnitude of
the predictions of (18) to those of (17), and the difference in phase betwéen the predictions
of (18) and (17). It is evident that for the power-law wave-number spectrum, approximation
(18), and hence (19), is valid even for the values of T = 1 msec and L = 100 m, used in this
example, for which T' < aL. Thus, within the additional limitation imposed by the frequency
independent assumption, no diversity effect is predicted for scatter from nonstationary rough
surfaces.

The reason for the lack of a frequency diversity effect for the Bragg backscattering pro-
cesses addressed in this study is not intuitively evident. It is thus worthwhile seeking a
simple physical explanation for this finding. In the case of point scatterers, the diversity
effect occurs because each irradiated scatterer returns a replica of the transmitted pulse. For
Bragg scatter, however, the scatter at frequency w; is governed by surface features having
a wave number K, = aw,, and at frequency w; by those having a wave number K, = aw,.
Thus, in the case of Bragg backscatter, frequency diverse waveforms increase the effective
number of “scatterers”, which has no effect since this number is already large. For the
same reason, the effects of frequency diversity may not be fully realized for other resonant
scattering processes, such as scatter from the resonant microbubbles that are responsible for
high-frequency sea surface backscatter. |

Frequency averaging effects have been experimentally observed for both volume scatter

and backscatter from rough surfaces at elevated grazing angles. Thus, the absence of a
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frequency diversity effect is an important feature of Bragg scattering processes permitting
their clear identification. It is noteworthy that the results of two experiments reported by
Chotiros, et al [1985] and Boehme and Chotiros [1988], where the parameter N took on values
of one and four at both sites where measurements were conducted, display no dependence
of the scattered field statistics on the bandwidth of the transmitted waveform.

5. Comparison with experiment

The data with which the theoretical predictions will be compared were acquired by Gen-
sane [1989] at two sites in an area characterized by a sandy seafloor. At one of the sites,
the seafloor was described as flat, while at the second, sand ripples with a spatial period of
1.2 m were observed. A parametric source having a nominal horizontal beamwidth of 3° at
the frequencies of interest was ﬁsed in these measurements which were conducted along four
bearings at each site. The height of the projecfor above the seabed was adjusted so that the
slant range to the ensonified area varied between 20 and 40 m. The projected signals were
selected to obtain data for a wide range of frequencies, pulse lengths, and signal bandwidths.

Our interest is in the pulse length dependence of the scintillation index reported for
gated pure tone pulses at frequencies of 20 and 40 kHz over the grazing angle range of 4 to
20°. These indices were determined by first analyzing the data to determine the scattering
strength and then detrending the data to remove the general depen&ence of the scattering
strength on grazing angle, a procedure described in detail by Chotiros, et al [1985]. Further -
analysis was then performed to determine the probability distribution and various moments
of the detrended data.

The measured scintillation indices shown in figure 11 represent an average over the data
at the two sites. The data for pulse lengths of .25 and 1 msec were acquired at a frequency
of 40 kHz. The 20 kHz data plotted for a pulse length of 1.5 msec is the reported average of
scintillation indices measured using 1 and 2 msec pulses. The theoretical curves presented

for comparison assume Cy of (12) is Gaussian, in which case

o =14+29[1 4+ (T/CYLW)2]_1/2[1 + (A?;O'/L,W)Z]“l/2
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for a Gaussian weighted pure tone pulse, and it is assumed that this expression is applicable
for a gated pure tone of duration equal to the effective pulse length of the Gaussian weighted
pulse. An average slant range of 30 m and grazing angle of 12° were used in evaluating o2.

As is evident with the logarithmic time scale employed in figure 11, o2 exhibits a “knee”
whose position is strongly dependent on the characteristic patch size Ly, assumed, and to
obtain agreement with the data Lw =~ 1 m. With the position of this knee established, v ~
1.5 follows from matching the magnitude of o2. Variations of this magnitude in the wave-
number spectrum over short ranges are consistent with the observations of Briggs [1989).

While the value of 4 derived from Gensane’s data is in agreement with values found by
Crowther [1980], the characteristic length Ly in this case differs greatly from the typical
value of 100 m found by Crowther. This difference may be due, in part, to the 10 msec pulse
lengths employed in Crowther’s measurements which yield insufficient resolution to observe
fluctuations on the scale of a meter. On the other hand, in Gensane’s case, the very limited
range scalé of the measurements prevents observation of large patches.

6. Discussion

A theory of backscattering from slightly rough statistically nonstationary surfaces has
been developed and applied to the seafloor reverberation process. The validity of the analy-
sis requires only that the dimensions of the ensonified area be large on an acoustic wavelength
scale and that the surface roughness wave-number spectrum be slowly véurying near the Bragg
wave number — conditions that are satisfied for seabed reverberation. Under these two con-
ditions, the scintillation index predicted for scattering from statistically stationary surfaces
is unity, so that nonstationarity must be invoked to obtain agreement with experiment. The
theory is applicable as well to microwave scattering from the sea surface and could be em-
ployed to investigate such effects as the influence of ripple near wave crests [Longuet-Higgins
1987] on the statistics of sea clutter.

When the theory is extended to the time domain, another feature of Bragg scatter be-

comes apparent: that the'frequency diversity effect observed for volume scatter and scatter
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from very rough surfaces at high grazing angles is absent. This is of importance for seafloor
reverberation because it may provide a method of distinguishing the contributions of rough
surface scatter from those of scattering due to volume inhomogeneities within the seabed.

In this analysis, the modified reflection coefficient x(#) of (4) has been treated as a
constant. However, nonstationarity of this parameter could contribute significantly to the
experimentally observed fluctuations. A theory comparable to that developed here that
includes variations in x would contain a strength parameter v, equal to the normalized
variance of |x|?. A crude estimate of this variance may be made using the variances of sound
speed and density reported by Jackson and Briggs [1992] and Yamamoto [1995]. Assuming
that the seabed may be treated as a homogeneous halfspace with correlated laterally varying
parameters, for sandy sediments 7, is estimated to be on the order of unity below the critical
angle and significantly lower above this angle. This estimate suggests that, if sound speed
and density variability is a contibuting factor, the fluctuation statistics will decrease with
increasing grazing angle. Only Crowther [1980] reports such a dependence of fluctuation
statistics on grazing angle. For sands, surficial sediment layering [McDaniel 1992] and sound
speed gradients [Moe and Jackson 1994] may strongly effect x at grazing angles above the
critical angle. Lateral variation of these parameters would hence produce an increase in
fluctuation with grazing angle. It is evident from this brief discussion that careful studies are
needed to fully assess the contribution of sediment variability to reverberation fluctuations.
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Figure 1. Geometry for backscattering from a random rough surface.
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Figure 2. Scintillation index for scatter from statistically stationary sur-
faces having Gaussian and power-law wave-number spectra.
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Figure 3. Ratio of the scattered intensity to that predicted at the Bragg fre-
quency for scatter from a stationary rough surface characterized by a power-
law wave-number spectrum.

28




2.0

GAUSSIAN

EXPONENTIAL
% 10F
v=.25

0.5 | 0 =300
Lw=20m
Px=Qy= 100

00 | { " 1 L .

0 20 40 60 80
SLANT RANGE (m)

100

Figure 4. Scintillation index for scattering from rough surfaces having Gaus-
sian and exponentially correlated nonstationarity with a characteristic length

of 20 m.
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Figure 5. Scintillation index for scattering from rough surfaces having Gaus-
sian and exponentially correlated nonstationarity with a characteristic length
of 5 m.
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Figure 6. Dependence of the scintillation index on beamwidth for scattering
from rough surfaces having Gaussian and exponentially correlated nonsta-

tionarity with characteristic lengths of 5 and 20 m.
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Figure 7. Normalized temporal covariance of the impulse response for scat-
ter from a rough surface having power-law wave-number spectra with char-
acteristic lengths of 20 and 100 m.
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Figure 8. Normalized temporal intensity covariance for the scatter of a 1
msec pure tone pulse from a stationary rough surface and surfaces having
Gaussian correlated nonstationarity with characteristic length as a parame-

ter.
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Figure 9. Normalized temporal intensity covariance for the scatter of a 10
msec pure tone pulse from a stationary rough surface and surfaces having
Gaussian correlated nonstationarity with characteristic length as a parame-

ter.
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Figure 10. Relative predictions of < p(7s + At/2)p*(1s — At/2) > by (17)
and its approximation (18) for the scatter of a 1 msec pure tone pulse from
a rough surface having a wave-number spectrum of power-law form with a

characteristic length of 100 m.
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Figure 11. Comparison of measured scintillation indices as a function of
effective pulse length with predictions assuming Gaussian correlated nonsta-

tionarity.
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